
The Introduction to Smart GWT training course is designed to get you up and running, productive, and able to
start building powerful, cutting-edge applications. It typically lasts three full days, spanning a weekend (Thurs,
Fri, Mon) OR six half days. This allows time for you to try out what you have learned, and be able to ask more
informed questions on the �inal day.

Course topics are:
Java / JavaScript and CSS Prerequisites
Installation & Deployment
UI Components
Data Binding
Developer Tools
Data Integration
Metadata Management
Optional Modules

Client-Server Communication
Event Handling
Basic Branding
Extending UI Components
Performance
Animation
JPA, Hibernate, SQL Connectors
Custom Server Data Integration

Training Course: Introduction to Smart GWT

Northrup Grumman

The training was excellent ... we were in awe of Paul's
technical ability, he just seems to know everything."“

Smart GWT Training
Become productive & start building
cutting edge applications

© Isomorphic Software. All rights reserved.

Register Now
http://smartclient.com/services/index.jsp#training
Courses do �ill up. Early booking will secure your place.

DETAILED AGENDA
#1 Welcome
a) Brief overview of Isomorphic Software

b) What is SmartClient?

c) What is Smart GWT?

#2 Setting up your machine for Smart GWT / SmartGWTEE development

a) Installation
Requirements:

• Java JDK
• GWT
• SmartGwtEE (useful to have SmartGwt LGPL too for samples)
• apache ant (included in SGWTEE download)

For ease of development we recommend:
• Eclipse
• GWT Plugin for Eclipse

b) Resources
Documentation:

• Sample index.html
• JavaDocs (online and local)
 o note the special “docs” package
• per-sample readme �iles
• documentation embedded in live sample

Support:
• Forums (include some sticky starter-guides / how-to's)
 o note the “FAQ’s” topic
• (support@isomorphic.com)

1
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#2 Introducing the SmartClient SDK (Continued)

c) Running the samples
• Can use ant to run directly from command line
• Import sample project(s) to Eclipse and run using the GWT plugin.
• Note: Showcase war also included for simple deployment

d) Anatomy of a Smart GWT project
• Src directory
• War directory
 o Startic versus generated content
Note that the GWT site http://code.google.com/ has extensive docs GWT projects

• Setup / troubleshooting steps to import a sample into Eclipse:
o Use the “File” / “New Java Project” option to create a new project
o Instead of the default location, browse to the existing sample directory and import. (A
number of warnings will show up. This is usual.)
o Use the “Properties” context menu item to edit the project:
o Ensure the Google / Use Google Web Toolkit option is enabled with an appropriate version
of GWT.

• Can use the latest version available, supplied by the GWT plugin, or a downloaded version.
• 2.7.x is recommended for “SuperDevMode”, but not essential

o Under Java Build Path, set up the SGWTEE_HOME environment variable to point to the
downloaded package. Used to retrieve the jars on the classpath.
o Use the “Run As” / “Run Con�igurations…” context menu to customize the GWT run
con�iguration for the project. The “Arguments” tag allows various options when you run the
app locally. I recommend increasing the available VM memory to 1G.
o To launch the app, use the context menu “Run As…” option to view as a web app in Classic or
SuperDev Mode (more on this later).

2
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#3 Coding in Smart GWT

a) Creating a �irst application (See also: /docs/SgwtEESetup.html in javadoc)
• 2 possibilities:
 o Create a new GWT application and add SmartGWT functionality to it
 o Copy an existing sample.

We usually recommend starting with an existing sample for a SGWTEE app unless you already have a
running app you are adding SGWT functionality to.

However, steps to create a new Smart GWT app from scratch:
SmartGWT (client side functionality only):

• create a gwt application
• add smartgwt libraries to build path
• inherit the SmartGwtEE module(s)

 <inherits name="com.smartgwtee.SmartGwtEE" /> or
 <inherits name="com.smartgwt.SmartGwt" />
 (Includes SmartGwt / SmartGwtEE functionality and Enterprise skin).
 No script version:
 <inherits name="com.smartgwt.SmartGwtNoScript" />
 Speci�ic themes:
 <inherits name="com.smartclient.theme.enterprise.EnterpriseResources" />
 Tools:
 <inherits name="com.smartgwt.tools.SmartGwtTools"/>
 - modify bootstrap �ile. Set isomorphic dir variable

SmartGWTEE
• start by importing a sample with similar functionality to what you need.
• include all jars under SGWTEE_HOME/lib for complete server-side functionality
• merge or copy the following resources to your project
(modifying app names if appropriate)
web.xml, taglib, server.properties, log4j con�ig, and all WEB-INF/lib jars
*See also: /docs/SgwtEESetup.html in javadoc

b) SmartGwt Classes and components:
• existing classes / APIs

o Widget classes (E.G: Canvas) and utility classes (E.G: SC)
• SmartClient (JS) vs SmartGwt (Java)

3
© Isomorphic Software. All rights reserved.

DETAILED AGENDA

Note: Exercises may require APIs not explicitly covered up to this point. The SmartClient Reference and the
existing examples in the Feature Explorer are an excellent source of additional information.

Exercise 1

Reminder: to create a new SmartGWTPower project from built-in-ds:
(Also see the readme.txt �ile per sample)

• copy the built-in-ds sample (in your �ile system)
• in Eclipse select New > Java Project
• select “from existing source” and browse to the copied project
• under project / properties

o enable google/use gwt
o add the SGWT_POWER_HOME environment variable (import all the .jars from the lib dir of the
package)

• Create a new SmartGwtEE project called “Scratch”, using the “built-in-ds” sample as a template
• build a class “SayButton” that displays its “message” property when clicked.
• use this project for all further exercises

4
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#4 SmartClient User Interface Components

a) Canvas
• Base UI Component
• Simple properties:
 o contents
 o backgroundColor, border, styleName
 o sizing, positioning, over�low
• draw() / show()
• Events
 o click, doubleClick, right click, dragResposition
 o focus and key events

b) Grids
• ListGrid
 o Fields and Records (data List - array)
 o Events
 o User Interactions
 • sorting
 • editing
 • �iltering (query by example)
 • grouping
 • freezing �ields
 • header drag
 • auto �it
 • selection
 • incremental data loading
 o Additional features / customization
 • �ield type display (text, images, links, dates)
 • custom cell values, styling
 • printing
 • nested components
 • formula / summary �ields
 • grid / group summaries
 • view state
 • advanced �ilter
 o Header and body properties
 o Introduction to AutoChild concept

• TreeGrid
 o Inherits from ListGrid
 o Hierarchical data (Tree object)

Exercise 2

• Create a grid with two �ields "TextValue", "Remove" and two rows of data
• Clicking in "Remove" �ield should delete the record
• Remove �ield should show an “X” character in it (should not be included in record data)

5
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#4 SmartClient User Interface Components (Continued)
c) Forms

• DynamicForm vs HTML Form
• Fields and values (single records)
• Item types
 o data items vs control items
 o data type and editor type
 o valueMap and valueIcons
 o canvasItems
• Appearance
 o layout, hint, titles, icons, valueIcons
• Features
 o appearance (layout, titles, hint, icons, hover)
 o show / hide, enable / disable
 o validation
 o events
 o mask / keypressFilters
• ValuesManager
 o Similar APIs to forms but allows separated presentation

d) Additional Data Components
• TileGrid
• ColumnTree (Miller Columns)
• DetailViewer
• Calendar
• Charts (Optional module)
 o explicit creation vs DataBoundComponent chartData() API
 o chartType
 o data model
 • facet-based, similar to cubeGrid
 • inlined facets (values declared within each facet)
 • support for multiple facets, to display related values on a chart
 • may be bound to a DataSource
 o Zoom
 o User interactions:
 • contextMenu, pointClick, valueClick, showValueOnHover, hoverHTML
 o DrawPane subclass - can use drawing APIs to customize appearance
 o Charts may be exported in PDF or image format

e) Layout Components
• Nesting of components.
• Canvas children
 o positioning, sizing, over�low
• Layout members
 o Stack vs Layout
 o Nesting Layouts
 o LayoutSpacers
 o margins, alignment
 o member resizeBars
 o dragReposition within layouts
• Windows
 o items
 o header / footer controls
 o modality
 o events (minimize, close)
• Tabsets / Tabs
 o tabs and panes
 o align / orientation
 o selection events
 o tab bar controls
• SectionStacks
 o sections and items
 o visibility mode
 o interactions (expand, drag)
 o section customization (showHeader, title, icon, header controls)
• SplitPane
 o designed for navigation / list / detail data presentation
 o navigationPane, detailPane, listPane
 o device-dependent appearance (revisited in “Mobile Development”)
 o navigatePane / autoNavigate
 o showDetailPane() / showListPane() / showNavigationPane()
 o dynamic pane titles (see listPaneTitleTemplate)

6
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#4 SmartClient User Interface Components (Continued)

f) Control Components
• Buttons
 o action, click
 o Statefulness and styling
 o ImgButtons, StretchImgButton, IButton class
• Menus
 o menubutton / menubar vs context menus
 o dynamic content (Title, checkmark, enabled/disabled)
 o custom �ields (inherits from ListGrid)
 o shortcut keys
 o submenus
 o tree menus/ tree menu item
• Other control components:
 o Slider, ToolStrip

Exercise 3

• Create a Button that creates a Window with title "My Window"
 containing a TabSet with a single Tab "My Tab"
 containing a DynamicForm with a button and text input in a row.
• Clicking on the button should append "Foo" to the current value of the text �ield.

Suggestion: start with either the DynamicForm or the Window and add each additional component one at a time.

g) Drawing
• standard API for drawing shapes beyond traditional HTML
• approaches: HTML5 <canvas>, SVG, VML
• DrawPane class
• DrawItem subclasses

Note: FacetChart makes use of the Drawing module

#5 Extending Smart GWT

a) SmartGWT components and inheritance
• Existing components
 o superclasses
 o automatically created children (auto-child pattern)

b) Creating custo components
• Applying customizations in constructor
• Component lifecycle
 o JavaScript widget creation
 o implicit vs explicit component creation, isCreated()
 o con�iguration properties (such as global ID)
 o initHandler, drawHandler
 o reclaiming memory (destroy(), markForDestroy(), isDestroyed(), explicit dereferencing)

c) ComponentXML
• XML format for components - used by (but not restricted to) Visual Builder
• screenLoader servlet / RPCManager.loadScreen()
• accessing loaded components in Java code
• dynamic screen generator
• registering classes for re�lection (see also DataSourceField.editorType)

d) Dashboard and Tools, EditMode
• Support for user-driven UI creation and modi�ication

7
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#6 Data Binding
a) Introduction to DataSources

• What is a DataSource
• How to de�ine / load a dataSource
 o Inline Java de�inition
 o XML de�inition (requires SC server)
 • loadDS jsp tag
 • <script src=...> tag pointing to dataSourceLoader servlet
 o Where does data come from (overview only)
 • client only dataSource
 • JSON / XML dataSource
 • SQL DataSource

Note: DataSource APIs are unchanged on the client for different data integration strategies. You can swap a client
only dataSource with a SQL or REST dataSource with no impact on the components and code that accesses the
data.

b) DataSource �ields
• �ield properties
 o name
 o type
 o title
 o hidden
• PrimaryKey �ield
• foreignKey �ield (for hierarchical data)
• validators
 o type
 o required
 o built in validator types

c) Explicit DataSource APIs and related concepts
Allows for direct data fetch / manipulation outside the standard databound components

fetchData() / addData() / updateData() / removeData()

callbacks and DSRequest / DSResponse objects
Operation Types / Operation Bindings

d) Component binding

• Common databound components:
 o DynamicForm, ListGrid, TreeGrid, DetailViewer, TileGrid
• Combining component and dataSource �ields
• Databinding APIs and behaviors:
 o ListGrid / TreeGrid:
 • fetchData() / �ilterData() / autoFetchData / invalidateCache
 • criteria objects
 • �ilterEditor
 • incremental data loading, server side sort
 • invalidateCache()
 • Create / Remove / Update / Delete [CRUD]:
 • canEdit, startEditing() / startEditingNew()
 • saving and autoSaveEdits
 • pending edit values
 • validation
 • removeData / removeSelectedData
 o DynamicForm:
 • editRecord() / editNewRecord()
 • saveData() / saveOperationType
 • getting values as criteria
 • AdvancedCriteria and Filter Builder
 o FormItem valueMaps / optionDataSource
 • valueField, displayField, picklistFields

 o DynamicForm and ValuesManager

8
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#6 Data Binding (Continued)

d) Component binding
• Common databound components:
 o DynamicForm, ListGrid, TreeGrid, DetailViewer, TileGrid
• Combining component and dataSource �ields
• Databinding APIs and behaviors:
 o ListGrid / TreeGrid:
 • fetchData() / �ilterData() / autoFetchData / invalidateCache
 • criteria objects
 • �ilterEditor
 • incremental data loading, server side sort
 • invalidateCache()
 • Create / Remove / Update / Delete [CRUD]:
 • canEdit, startEditing() / startEditingNew()
 • saving and autoSaveEdits
 • pending edit values
 • validation
 • removeData / removeSelectedData
 o DynamicForm:
 • editRecord() / editNewRecord()
 • saveData() / saveOperationType
 • getting values as criteria
 • AdvancedCriteria and Filter Builder
 o FormItem valueMaps / optionDataSource
 • valueField, displayField, picklistFields
 o DynamicForm and ValuesManager

e) Data Model objects
• ResultSet
- List Interface
- Automatically generated
- Intelligent cache management
• ResultTree object
- Tree interface

Exercise 4

• Create a DataSource in directly Java, with a DynamicForm and a ListGrid bound to it.
• Using only settings on the DataSource:

o make the form show one Text Field titled "Name" and one drop-down select titled
 "Occupation" with values "CEO", "CTO" and "CFO".

• The grid should also show two columns, "Name" and "Occupation"

9
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#7 Data Integration

See documentation topics: “ClientServerIntegration”, “ClientDataIntegration”,
“ServerDataIntegration”, “WritingCustomDS”

a) Client-side databinding
• Client-only dataSource - client side test data
 o Note asynchronous operations, standard DS cache mgmt
• Fetching / Updating remote data by URL
 o XML / JSON operation
 o dataURL, recordXPath, valueXPath
 o dataFormat / dataProtocol
 o operationBindings for per operation URL, protocol etc.
 • (operationType / operationID)
 o transformRequrest / transformResponse
 o cacheAllData / testFileName / dataURL for clientOnlyDS

Examples:
http://www.smartclient.com/smartgwt/showcase/#grid_dataoperations_fetch
http://www.smartclient.com/smartgwt/showcase/.#xpath_xml_integration_category
http://www.smartclient.com/smartgwt/showcase/#json_integration_category_simple

 o RestDataSource class
 • per operation dataURLs
 • support for meta data (start row, end row, etc.)
 • Documented format for server inbound data and responses

Example:
http://www.smartclient.com/smartgwt/showcase/#restfulds_xml_integration_category

 o Existing web services -- SchemaSet loadWSDL / loadXMLSchema
 (see WsdlBinding topic)
• Options for totally custom client-side data integration:
 o ClientOnlyDataSource + getClientOnlyResponse
 o “clientCustom” operationBinding dataProtocol
 o + transformRequest / processResponse

Exercise 5

• copy ds/test_data/animals.data.xml into a new subdirectory of your project's webroot
 (war) directory (currently exists under the 'ds' directory of the showcase)
• construct a DataSource that can read this data in response to a fetch
• show a grid bound to this dataSource fetching data
• show a form bound to the same data source such that selecting a record in the list grid
 shows the values in the form

10
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#7 Data Integration (Continued)

b) Server-side databinding
• Generic server dataSource / server side features:
 o De�ine dataSource on server using ds.xml �ile
 o IDACall servlet
 o generic ds approaches (for arbitrary business logic)
 • BasicDataSource subclass plus serverConstructor attribute.
 • Implement execute... methods
 • Server-Side DSRequest / DSResponse objects

Example:
http://www.smartclient.com/smartgwtee/showcase/#simple_custom_ds
Note - extensible format (example “mapped bean class”):
http://www.smartclient.com/smartgwtee/showcase/ - orm_ds

DMI dataSource (serverObject + method to invoke)
Example: ‘ds-dmi’ example in package

• Server side scripting
 o dataSource.script / operationBinding.script
 o languages
 o context variables (see “Velocity variables”) and return values

Example:
http://www.smartclient.com/smartgwtee/showcase/#scripting_user_speci�ic_data

Notes:
o operationType “custom” for arbitrary (non crud) operation
o Server code can instantiate DSRequests
o Server code can also (eg) issue http requests against another server, so could use a
 server-side ds to integrate with a web service

• Server side validation
 o type / built-in validation runs on client and server
 o custom validation by setting properties on DSResponse

• Velocity support
o allows you to directly customize dataSource behavior by injecting VTL statements
 to be evaluated on the server at runtime.

Example:
http://www.smartclient.com/smartgwtee/showcase/#scripting_validation
 o addToTemplateContext (Typically called from an override to the IDACall servlet)

11
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#7 Data Integration (Continued)

• OperationBinding features:
 o DMI serverObject, methodName, method arguments
 o declarative authorization/authentication (requiresAuth / requiresRole / requires)
 • JAAS integration via httpServletRequest.getRemoteUser() and isUserInRole()
 • Non-JAAS support via servlet override / rpcManager.setUserRoles()
 o outputs
 o mail

• autoDeriveSchema + schemaBean
• Queued requests and “transaction chaining”

Example:
http://www.smartclient.com/smartgwtee/showcase/ - transactions_queued_md

• SQL DataSource (See SQLDataSource topic in docs package)
 o serverType= “sql”
 o database con�ig - server.properties + ds tableName
 o default SQL behavior
 o custom SQL with no code
 • criteria / values objects
 • custom sql templating:
 • customSQL
 • selectClause, whereClause, valuesClause, tableClause
 • �ield properties:
 o customSQL
 o tableName
 o sqlStorageStrategy
 o Combining with DMI to allow custom java code
 • totally custom operations
 • running custom behavior before / after default logic
 • injecting custom velocity variables
 o autoDeriveSchema + tableName
 o Database joins: includeFrom / includeVia
 o DataSource.audit (Not strictly limited to SQL DataSources)

• Hibernate DataSource
 o HibernateIntegration doc topic
 o serverType= “hibernate”

• REST DataSource Servlet
o Allows access to any server-side dataSource via the documented client-side
 RESTDataSource request / response formats.
o This means you can access SmartGWT dataSources on the server from any client side
 technology that via HTTP.

• DynamicDSGenerator
 o Allows DataSource creation on the server at runtime

Exercise 6

• Modify the supplyItem.ds.xml �ile to have an additional fetch operation which only returns records
 where the unitCost is less than 1.
• create a ListGrid bound to this new dataSource, showing the data returned by this operation

12
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#8 Client-Server Communication
a) Introduction to the RPCManager class

• RPCManager handles low level client/server communications
• Used by DataSource code
• Can be accessed directly via documented APIs

b) Common use cases for direct RPCManager APIs
• Start/send queue
• default actionURL (servlet)
• send / sendRequest non “record” data
 o atomic responses [yes/no]
 o unstructured data (HTML content, code)

c) RPCManager Features
 • automatic, bi-directional, type-safe Java<->JavaScript translation of nested structures
 • http proxying
 • request queuing

d) Additional client-server communication functionality
 • DMI class + app.xml con�iguration �ile
 • WebService class

e) Relogin
goal: seamless handling of user’s privileges expiring, integrated with standard server authentication
 • achieved via special server responses
 • options for handling (RPCManager.loginRequired(), resubmit transaction)

#9 Developer Tools
Note: These tools require the “tools” module

a) Developer Console
• Launching the developer console
 Java: SC.showConsole() vs javascript:isc.showConsole()
• Overview of tabs
 o Results tab: SmartClient logs and direct javascript eval
 o Watch tab (application structure)
 o RPCManager tab – view server turnarounds
• The DOM inspector
• Running code from the Eval area
• Logging Categories and priorities
• Adding logging messages to applications
• Errors and Stack Traces
• Debugging topic in SmartClient Reference

b) DataSource Wizard / Visual Builder

Note: building application views using VisualBuilder will not generate SGWT Java code at this time. Screens
built in XML can be loaded / modi�ied in SGWT.

• dataSource wizard

c) DataSource Console (AKA Admin Console)
 • Database con�iguration
 • DataSource import

d) DataSource Generator Wizard

e) Automated testing support

Selenium integration (See “Automated Testing” and “Using Selenium” doc topics), and “selenium” subdirectory
of SmartGWT package.
 • Selenium RC vs Selenium WebDriver
 • AutoTest class / SmartClient Locators
 • Handling asynchronous application state changes (waitForElementClickable etc)
 • TestRunner class to manage automated playback of recorded suites

13
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#10 Event Handling

a) SmartClient event model
• SmartClient event types
 o Standard per-component events (click, doubleClick, etc)
 o Component level drag/drop
 o Component level focus / keyboard events
 o component-speci�ic events:
 • ListGrid: click, doubleclick, drag/drop of records
 • FormItem events: changed, focus, blur, icon events
 • Calendar eventChanged
• EventObject - event details (source, etc), canceling events
• EventHandler class
• SmartClient event bubbling
• Page level events
 o registerKey
 o Native GWT mechanisms for capturing page level mouse events

b) Loading skins

 • Loading skin resource �iles
 • Modifying bootstrap HTML to load skin

c) Anatomy of a skin directory

 • load_skin.js
 • skin_styles.css
 • images directory

c) Creating a custom skin
 • start with existing skin
 • component images and styles
 • loading your custom skin
 See “skinning” topic in documentation

#11 Mobile Development

(See “mobile development” documentation topic)

a) Adaptive or “mobile-focused” components
 o Form controls (SelectItem, ComboBox, Menus)
 o SplitPane
 o Navigation bar

b) Touch Event handling

c) Detecting mobile views
 o Browser.isTouch, Browser.isHandset, Browser.isTablet
 o Page.getOrientation()

d) Remote debugging

e) Packaging SmartClient applications as native apps.

14
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#12 Customizing Appearance, Look and Feel (Skinning / Branding)

a) Localization
• GWT has a standard localization mechanism (See GWT live documentation)
• inherit i18n gwt module and enable locales you want:
 o <inherits name=‘com.google.gwt.18n.I18N’/>
 o <extend-property name=”locale” values=”en”/>
 o <extend-property name=”locale” values=”de” />
• Switch to a locale via parameter on URL: ?locale=de, or via a meta data tag:
 o <meta name=”gwt:property” content=”locale=de” >

SmartGWT ships with localized system messages for a large number of locales.
The above steps will enable this functionality for the locale you selected

To further localize your application:
• for general localization of application-speci�ic messages, follow standard GWT localization
 techniques:

 o Create Constants and/or Messages interfaces
 o create per-locale .properties �iles to ful�ill those interfaces
 o use GWT.create() to instantiate these within your app and call the APIs to get localized
 messages

• To override / extend localized system messages,
 o extend SmartGwtMessages
 o create .properties �ile(s) with the messages you want to modify
 o call i18nUtil.initMessages(...) to make use of your modi�ied system messages
 o Page.getOrientation()

b) Loading skins
 • Loading skin resource �iles
 • Modifying bootstrap HTML to load skin

c) Anatomy of a skin directory
 • load_skin.js
 • skin_styles.css
 • images directory

d) Creating a custom skin
 • start with existing skin
 • component images and styles
 • loading your custom skin
 See “skinning” topic in documentation

#13 Performance Considerations

a) Simple optimizations
• SmartClient event types
 o Standar

 • Understanding create() vs draw() vs show()
 • For nested components,
 o avoid drawing children outside parents before adding.
 o consider building hierarchy before draw, where possible
 • Consider lazy creation of initially hidden user interfaces
 • Component reuse (see SmartClient Architecture doc topic)
 • Memory reclamation, understanding canvas.destroy()
 • canvas.redraw() vs canvas.markForRedraw()
 • RPCRequest queuing
 • ListGrid optimization
 o draw ahead ratio
 • quickDrawAheadRatio
 o resultSet.resultSize
 o record component pooling

14
© Isomorphic Software. All rights reserved.

DETAILED AGENDA
#13 Performance Considerations (Continued)

b) Network Usage
 • Browser caching
 o version parameter on resource URL (automatically applied when using taglib)
 o version-speci�ic skinImgDir
 o FileDownload servlet
 • Compression
 o gzip resources and FileDownload Servlet
 o dynamic compression – CompressionFilter

#14 Optional Modules

 • Analytics
 • Real-Time Messaging
 • Network Performance

#15 Q&A

15
© Isomorphic Software. All rights reserved.

HELPFUL RESOURCES

During and after training, you will �ind the following sources of information very useful:

SmartClient website: http://www.smartclient.com
• SmartGwt product homepage: http://www.smartclient.com/smartgwt/
• Online smartgwt showcase: http://www.smartclient.com/smartgwt/showcase/
• Online smartgwtee showcase: http://www.smartclient.com/smartgwtee/showcase/
• Online smartgwt javadocs: http://www.smartclient.com/smartgwt/javadoc/
• SmartGWT and SmartClient nightly builds (LGPL and Evaluation):
• http://www.smartclient.com/builds
• SmartClient and SmartGwt forums: http://forums.smartclient.com/
• Contacting SmartClient: support@isomorphic.com or
http://www.smartclient.com/company/contact.jsp
• SmartClient blog: http://blog.smartclient.com/
• SmartGwt project homepage: http://code.google.com/p/smartgwt/
• includes download links, documentation links, lgpl source code
• SmartClient documentation: http://www.smartclient.com/product/documentation.jsp

SmartGwtEE package
• index.html
• Javadocs for SmartGwt and SmartClient server
• Numerous samples including complete showcase
• per-sample readme �iles with build instructions

16
© Isomorphic Software. All rights reserved.

Register Now
http://smartclient.com/services/index.jsp#training
Courses do �ill up. Early booking will secure your place.

Isomorphic Software
1 Sansome Street, Suite 3500
San Francisco, CA 94104, USA

Smart GWT Training

